Sensors (Jan 2015)

Improving the Performance of an Electronic Nose by Wine Aroma Training to Distinguish between Drip Coffee and Canned Coffee

  • Kouki Fujioka,
  • Yasuko Tomizawa,
  • Nobuo Shimizu,
  • Keiichi Ikeda,
  • Yoshinobu Manome

DOI
https://doi.org/10.3390/s150101354
Journal volume & issue
Vol. 15, no. 1
pp. 1354 – 1364

Abstract

Read online

Coffee aroma, with more than 600 components, is considered as one of the most complex food aromas. Although electronic noses have been successfully used for objective analysis and differentiation of total coffee aromas, it is difficult to use them to describe the specific features of coffee aroma (i.e., the type of smell). This is because data obtained by electronic noses are generally based on electrical resistance/current and samples are distinguished by principal component analysis. In this paper, we present an electronic nose that is capable of learning the wine related aromas using the aroma kit “Le Nez du Vin,” and the potential to describe coffee aroma in a similar manner comparable to how wine experts describe wine aroma. The results of our investigation showed that the aromas of three drip coffees were more similar to those of pine and honey in the aroma kit than to the aromas of three canned coffees. Conversely, the aromas of canned coffees were more similar to the kit coffee aroma. In addition, the aromatic patterns of coffees were different from those of green tea and red wine. Although further study is required to fit the data to human olfaction, the presented method and the use of vocabularies in aroma kits promise to enhance objective discrimination and description of aromas by electronic noses.

Keywords