Mathematics Interdisciplinary Research (Jul 2016)

Wiener Polarity Index of Tensor Product of Graphs

  • Mojgan Mogharrab,
  • Reza Sharafdini,
  • Somayeh Musavi

DOI
https://doi.org/10.22052/mir.2016.34109
Journal volume & issue
Vol. 1, no. 2
pp. 305 – 316

Abstract

Read online

Mathematical chemistry is a branch of theoretical chemistry for discussion and prediction of the molecular structure using mathematical methods without necessarily referring to quantum mechanics. In theoretical chemistry, distance-based molecular structure descriptors are used for modeling physical, pharmacologic, biological and other properties of chemical compounds. The Wiener Polarity index of a graph G is denoted by WP(G) is the number of unordered pairs of vertices of distance 3. The Wiener polarity index is used to demonstrate quantitative structure-property relationships in a series of acyclic and cycle-containing hydrocarbons. Let G,H be two simple connected graphs. Then the tensor product of them is denoted by G⨂H whose vertex set is V(G⨂H)=V(G)×V(H) and edge set is E(G⨂H)={(a,b)(c,d)| ac∈E(G) ,bd∈E(H) }. In this paper, we aim to compute the Wiener polarity index of G⨂H which was computed wrongly in [J. Ma, Y. Shi and J. Yue, The Wiener Polarity Index of Graph Products, Ars Combin., 116 (2014) 235-244].

Keywords