Experimental and Molecular Medicine (Dec 2023)

IgSF11 deficiency alleviates osteoarthritis in mice by suppressing early subchondral bone changes

  • Gyeong Min Kim,
  • Jihee Kim,
  • June-Yong Lee,
  • Min-Chan Park,
  • Soo Young Lee

DOI
https://doi.org/10.1038/s12276-023-01126-6
Journal volume & issue
Vol. 55, no. 12
pp. 2576 – 2585

Abstract

Read online

Abstract Osteoarthritis (OA) is a degenerative joint disease. While it is classically characterized by articular cartilage destruction, OA affects all tissues in the joints and is thus also accompanied by local inflammation, subchondral bone changes, and persistent pain. However, our understanding of the underlying subchondral bone dynamics during OA progression is poor. Here, we demonstrate the contribution of immunoglobulin superfamily 11 (IgSF11) to OA subchondral bone remodeling by using a murine model. In particular, IgSF11 was quickly expressed by differentiating osteoclasts and upregulated in subchondral bone soon after destabilization-of-the-medial-meniscus (DMM)-induced OA. In mice, IgSF11 deficiency not only suppressed subchondral bone changes in OA but also blocked cartilage destruction. The IgSF11-expressing cells in OA subchondral bone were found to be involved in osteoclast maturation and bone resorption and colocalized with receptor-activator of nuclear-factor κ-B (RANK), the key osteoclast differentiation factor. Thus, our study shows that blocking early subchondral bone changes in OA can ameliorate articular cartilage destruction in OA.