PLoS ONE (Jan 2019)
Identification of variant HIV envelope proteins with enhanced affinities for precursors to anti-gp41 broadly neutralizing antibodies.
Abstract
HIV envelope protein (Env) is the sole target of broadly neutralizing antibodies (BNAbs) that are capable of neutralizing diverse strains of HIV. While BNAbs develop spontaneously in a subset of HIV-infected patients, efforts to design an envelope protein-based immunogen to elicit broadly neutralizing antibody responses have so far been unsuccessful. It is hypothesized that a primary barrier to eliciting BNAbs is the fact that HIV envelope proteins bind poorly to the germline-encoded unmutated common ancestor (UCA) precursors to BNAbs. To identify variant forms of Env with increased affinities for the UCA forms of BNAbs 4E10 and 10E8, which target the Membrane Proximal External Region (MPER) of Env, libraries of randomly mutated Env variants were expressed in a yeast surface display system and screened using fluorescence activated cell sorting for cells displaying variants with enhanced abilities to bind the UCA antibodies. Based on analyses of individual clones obtained from the screen and on next-generation sequencing of sorted libraries, distinct but partially overlapping sets of amino acid substitutions conferring enhanced UCA antibody binding were identified. These were particularly enriched in substitutions of arginine for highly conserved tryptophan residues. The UCA-binding variants also generally exhibited enhanced binding to the mature forms of anti-MPER antibodies. Mapping of the identified substitutions into available structures of Env suggest that they may act by destabilizing both the initial pre-fusion conformation and the six-helix bundle involved in fusion of the viral and cell membranes, as well as providing new or expanded epitopes with increased accessibility for the UCA antibodies.