Sensors (Oct 2022)

Development of a Conductometric Sensor Based on Al,Ca-Doped ZnO for the Detection of Formaldehyde

  • Simona Crispi,
  • Giovanni Neri

DOI
https://doi.org/10.3390/s22197465
Journal volume & issue
Vol. 22, no. 19
p. 7465

Abstract

Read online

In the present study, the development of a conductometric gas sensor based on Al,Ca-doped zinc oxide composite which is finalized to the detection of formaldehyde (HCHO) at a low concentration in air is investigated. The electrical and sensing properties of the composite based on ZnO doped with different loadings of Al and/or Ca (from 0 up to 5 at%) were evaluated. The gas-sensing mechanism of Al,Ca-doped zinc oxide nanocomposite-based sensors was also discussed. The optimized 3%Al,3%Ca-ZnO sensor displayed a formaldehyde response of 3.5 (@ 4 ppm HCHO/air) and an experimental low detection limit of 125 ppb HCHO/air, at the operating temperature of 400 °C. The sensor was also shown to be selective to HCHO with respect to many interferent indoor gases, but NO2 changed the baseline resistance in an opposite way compared to the target gas. The developed device for monitoring HCHO in indoor and workplace environments has the advantage of a simple planar structure and can be easily fabricated for mass production by using low-cost materials and easy fabrication methods.

Keywords