Scientific Reports (Apr 2021)

Identification and functional analysis of a biflavone as a novel inhibitor of transient receptor potential vanilloid 4-dependent atherogenic processes

  • Mazen O. Alharbi,
  • Bidisha Dutta,
  • Rishov Goswami,
  • Shweta Sharma,
  • Kai Y. Lei,
  • Shaik O. Rahaman

DOI
https://doi.org/10.1038/s41598-021-87696-9
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Atherosclerosis, a chronic inflammatory disease of large arteries, is the major contributor to the growing burden of cardiovascular disease-related mortality and morbidity. During early atherogenesis, as a result of inflammation and endothelial dysfunction, monocytes transmigrate into the aortic intimal areas, and differentiate into lipid-laden foam cells, a critical process in atherosclerosis. Numerous natural compounds such as flavonoids and polyphenols are known to have anti-inflammatory and anti-atherogenic properties. Herein, using a fluorometric imaging plate reader-supported Ca2+ influx assay, we report semi high-throughput screening-based identification of ginkgetin, a biflavone, as a novel inhibitor of transient receptor potential vanilloid 4 (TRPV4)-dependent proatherogenic and inflammatory processes in macrophages. We found that ginkgetin (1) blocks TRPV4-elicited Ca2+ influx into macrophages, (2) inhibits oxidized low-density lipoprotein (oxLDL)-induced foam cell formation by suppressing the uptake but not the binding of oxLDL in macrophages, and (3) attenuates oxLDL-induced phosphorylation of JNK2, expression of TRPV4 proteins, and induction of inflammatory mRNAs. Considered all together, the results of this study show that ginkgetin inhibits proatherogenic/inflammatory macrophage function in a TRPV4-dependent manner, thus strengthening the rationale for the use of natural compounds for developing therapeutic and/or chemopreventive molecules.