Ecotoxicology and Environmental Safety (Nov 2021)

Comparative effects of Tagetes patula L. extraction, mercapto-palygorskite immobilisation, and the combination thereof on Cd accumulation by wheat in Cd-contaminated soil

  • Yale Wang,
  • Yingming Xu,
  • Guohong Sun,
  • Xuefeng Liang,
  • Yuebing Sun,
  • Lin Wang,
  • Qingqing Huang

Journal volume & issue
Vol. 224
p. 112639

Abstract

Read online

Phytoextraction and in situ immobilisation are two of the most commonly used remediation techniques for Cd-contaminated farmland. In theory, phytoextraction followed by immobilisation can reduce the total Cd and available Cd contents of the soil, making it suitable for the remediation of heavily Cd-contaminated alkaline soil. However, the real remediation efficiency is uncertain, and it is also unknown whether phytoextraction affects subsequent wheat Cd accumulation. In this study, two seasonal pot experiments were conducted to determine the effects of S,S-ethylenediamine disuccinic acid (EDDS)-assisted Tagetes patula L. (T. patula) extraction, mercapto-palygorskite (MPAL) immobilisation, and the combination thereof on subsequent Cd accumulation in wheat. EDDS application significantly increased the Cd content in the subsequent-soil solution, but the EDDS-activated Cd could not be absorbed by wheat roots. T. patula extraction decreased the subsequent soil pH value by 0.1–0.2 pH units, increased the available Cd content by 0.19 mg/kg, but had no effect on subsequent wheat Cd accumulation. The Cd absorption capacity of wheat roots and the Cd translocation capacity of wheat stems to grains of high-Cd wheat were higher than that of low-Cd wheat cultivar. The application of MPAL had no effect on soil pH value, but significantly decreased soil available Cd and exchangeable Cd contents by 17.78–36.76% and 21.13–52.63%; it also increased the Fe/Mn oxide-bound Cd fraction by 14.02–64.00%. MPAL application decreased the wheat grain Cd concentrations from 0.51 to 0.13 mg/kg (high-Cd wheat) and 0.35 to 0.05 mg/kg (low-Cd wheat), but had no negative effect on Fe, Mn, Cu, and Zn elements. Compared with the single MPAL application treatments, the combination treatments had no inhibition effect on Cd accumulation in wheat. MPAL is an efficient amendment, and considering the remediation efficiency, stability, and time of these methods, the combination of MPAL application with a low-Cd accumulation wheat cultivar represents a suitable proposal to ensure the safe production of wheat in Cd-contaminated alkaline soil.

Keywords