Nanomaterials (Jul 2020)

Endothelial Cell Targeting by cRGD-Functionalized Polymeric Nanoparticles under Static and Flow Conditions

  • Lucía Martínez-Jothar,
  • Arjan D. Barendrecht,
  • Anko M. de Graaff,
  • Sabrina Oliveira,
  • Cornelus F. van Nostrum,
  • Raymond M. Schiffelers,
  • Wim E. Hennink,
  • Marcel H. A. M. Fens

DOI
https://doi.org/10.3390/nano10071353
Journal volume & issue
Vol. 10, no. 7
p. 1353

Abstract

Read online

Since αvβ3 integrin is a key component of angiogenesis in health and disease, Arg-Gly-Asp (RGD) peptide-functionalized nanocarriers have been investigated as vehicles for targeted delivery of drugs to the αvβ3 integrin-overexpressing neovasculature of tumors. In this work, PEGylated nanoparticles (NPs) based on poly(lactic-co-glycolic acid) (PLGA) functionalized with cyclic-RGD (cRGD), were evaluated as nanocarriers for the targeting of angiogenic endothelium. For this purpose, NPs (~300 nm) functionalized with cRGD with different surface densities were prepared by maleimide-thiol chemistry and their interactions with human umbilical vein endothelial cells (HUVECs) were evaluated under different conditions using flow cytometry and microscopy. The cell association of cRGD-NPs under static conditions was time-, concentration- and cRGD density-dependent. The interactions between HUVECs and cRGD-NPs dispersed in cell culture medium under flow conditions were also time- and cRGD density-dependent. When washed red blood cells (RBCs) were added to the medium, a 3 to 8-fold increase in NPs association to HUVECs was observed. Moreover, experiments conducted under flow in the presence of RBC at physiologic hematocrit and shear rate, are a step forward in the prediction of in vivo cell–particle association. This approach has the potential to assist development and high-throughput screening of new endothelium-targeted nanocarriers.

Keywords