Agriculture (Oct 2022)

Response of Rice Yield and Grain Quality to Combined Nitrogen Application Rate and Planting Density in Saline Area

  • Yinglong Chen,
  • Yang Liu,
  • Shiqi Dong,
  • Juge Liu,
  • Yang Wang,
  • Shahid Hussain,
  • Huanhe Wei,
  • Zhongyang Huo,
  • Ke Xu,
  • Qigen Dai

DOI
https://doi.org/10.3390/agriculture12111788
Journal volume & issue
Vol. 12, no. 11
p. 1788

Abstract

Read online

To determine the combining effects of nitrogen application rate and planting density on rice yield and grain quality formation under salinity conditions, a field experiment was conducted in the coastal saline area using Oryza sativa L. cv. Nangeng 9108 from 2019 to 2020. The experiment was designed with six nitrogen rates (0, 210, 255, 300, 345, and 390 kg ha−1; denoted as N0-N390, respectively) and two transplanting densities (334,000 and 278,000 hills ha−1; denoted as D1 and D2, respectively). The results indicated that, with the increase of nitrogen input rate, the panicles number and spikelets per panicle increased first, subsequently decreased, and peaked under 300 kg ha−1 N, whereas the filled-kernel rate and grain weight displayed a decreasing trend. The panicle number and grain weight were higher under D1 treatment compared to those under D2 treatment, while the spikelet number per panicle and the filled-kernel rate displayed an opposite trend. The grain yield displayed highest under N300D1 treatment among all treatments, accompanied by the highest agronomic N use efficiency, and the actual yield reached 8060.4 kg ha−1 and 7869.8 kg ha−1 in 2019 and 2020, respectively. Increased nitrogen application rate significantly improved the grain processing quality and nutritional quality, while reducing the appearance quality and cooking/eating quality. Higher transplant density was conductive to grain nutritional quality, but notably reduced the processing quality, appearance quality and cooking/eating quality. Overall, a combination of 300 kg ha−1 nitrogen rate and 334,000 hills ha−1 planting density was recommended for relatively higher rice yield and better grain quality in the saline area.

Keywords