Animals (Mar 2024)

Efficacy of <i>Saccharomyces cerevisiae</i> Fermentation Product and Probiotic Supplementation on Growth Performance, Gut Microflora and Immunity of Broiler Chickens

  • Stephen Soren,
  • Guru P. Mandal,
  • Samiran Mondal,
  • Saktipada Pradhan,
  • Joydip Mukherjee,
  • Dipak Banerjee,
  • Manik C. Pakhira,
  • Amla,
  • Anjan Mondal,
  • Victor Nsereko,
  • Indranil Samanta

DOI
https://doi.org/10.3390/ani14060866
Journal volume & issue
Vol. 14, no. 6
p. 866

Abstract

Read online

Concern for global health security and the environment due to the emergence of antibiotic-resistant bacteria and antibiotic residues in meat and other livestock products has led many countries to restrict the use of antibiotics in animal feed. This experiment was performed to assess the impact of dietary supplementation of a probiotic (Bacillus subtilis) and a postbiotic (Saccharomyces cerevisiae fermentation product) on growth performance, carcass traits, blood haemato-biochemical profile, gut microflora, gut morphology, and immune response in broilers as an alternative to antimicrobials in poultry production system to minimize the effect on global health security. A total of 324 one-day-old Ven Cobb 400 broiler chicks were randomly divided into three dietary groups, each containing 12 replicated pens, and each replicate contained nine chickens. The dietary groups consisted of (1) a basal diet without any growth promoters (T1), (2) the basal diet augmented with Bacillus subtilis at 200 g/MT feed (T2), and (3) the basal diet supplemented with Saccharomyces cerevisiae fermentation product at 1.25 kg/MT feed (T3). To calculate body weight gain, all birds and residual feed were weighed on a replicated basis on days 0, 7, 14, 21, 28, 35, and 42; mortality was recorded daily. At the end of the trial (42 d), two chickens from each replicate were slaughtered for carcass traits, gut microflora, and morphology measurements. Blood samples were collected for the haemato-biochemical profile on 35 d and antibody titer on 28 d and 35 d. Feeding with SCFP (T3 group) significantly improved average daily feed intake (ADFI) and average daily gain (ADG) of chickens compared to the T1 (control) and T2 (probiotic) groups from 1 to 14 days of age. Feed conversion ratio (FCR) was significantly improved in SCFP-fed birds (T3) relative to the control (T1) over the entire experimental period. Carcass traits and blood haemato-biochemical parameters remained unaffected by any diets. However, cholesterol levels and concentrations of corticosterone were significantly lower in T3 compared to T2 and T1 groups. Total E. coli, Enterohaemorrhagic E. coli, ESBL-producing Enterobacteriaceae, and Salmonella counts were significantly lower in T2 and T3 groups compared to T1 group and Salmonella counts were lower in T3 when compared to T2. However, there was no significant difference in Lactobacillus count among treatment groups. A significant increase in villi height and villi-height-to-crypt-depth ratio (VH: CD) was observed in both T3 and T2 groups. On day 28, the T3 and T2 groups exhibited a significant increase in antibody titers against Newcastle disease virus and infectious bursal disease virus. It can be concluded that Saccharomyces cerevisiae fermentation product and Bacillus subtilis probiotic could be viable alternatives to antimicrobials in poultry production considering beneficial impacts in broilers fed an antibiotic-free diet.

Keywords