Trakya Üniversitesi Sosyal Bilimler Dergisi (Dec 2021)

PREDICTION OF COMPUTER GAME ADDICTION IN CHILDREN USING DEVELOPED ARTIFICIAL NEURAL NETWORKS (ANN) AND MULTIPLE LINEAR REGRESSION (MLR) MODELS

  • Esma UZUNHİSARLIKCI,
  • Erhan KAVUNCUOĞLU,
  • Hanife AKGÜL

DOI
https://doi.org/10.26468/trakyasobed.789767
Journal volume & issue
Vol. 23, no. 2
pp. 551 – 570

Abstract

Read online

Game addiction in children plays a major role in the mental and physical development of the child. Therefore, various scales are used to examine computer game addiction of children and various input parameters (age, gender, daily play time, etc.) are utilized in scales. The purpose of this study is to project a system that estimates whether the child is addicted to the game when looking at the input parameters. Artificial Neural Networks (ANN) and Multiple Linear Regression (MLR) techniques were used to design this system. In order to measure the predictive performance of the developed models, the Root Mean Squared Error (RMSE), and Correlation Coefficient (R) criteria were examined respectively and it was observed that the model developed by ANN predicted CGA with high accuracy.

Keywords