Plants (Mar 2023)

Grape Heterogeneity Index: Assessment of Overall Grape Heterogeneity Using an Aggregation of Multiple Indicators

  • Claire E. J. Armstrong,
  • Pietro Previtali,
  • Paul K. Boss,
  • Vinay Pagay,
  • Robert G. V. Bramley,
  • David W. Jeffery

DOI
https://doi.org/10.3390/plants12071442
Journal volume & issue
Vol. 12, no. 7
p. 1442

Abstract

Read online

Uniform grape maturity can be sought by producers to minimise underripe and/or overripe proportions of fruit and limit any undesirable effects on wine quality. Considering that grape heterogeneity is a multifaceted phenomenon, a composite index summarising overall grape heterogeneity was developed to benefit vineyard management and harvest date decisions. A grape heterogeneity index (GHI) was constructed by aggregating the sum of absolute residuals multiplied by the range of values from measurements of total soluble solids, pH, fresh weight, total tannins, absorbance at 520 nm (red colour), 3-isobutyl-2-methoxypyrazine, and malic acid. Management of grape heterogeneity was also studied, using Cabernet Sauvignon grapes grown under four viticultural regimes (normal/low crop load, full/deficit irrigation) during the 2019/2020 and 2020/2021 seasons. Comparisons of GHI scores showed grape variability decreased throughout ripening in both vintages, then significantly increased at the harvest time point in 2020, but plateaued on sample dates nearing the harvest date in 2021. Irrigation and crop load had no effect on grape heterogeneity by the time of harvest in both vintages. Larger vine yield, leaf area index, and pruning weight significantly increased GHI score early in ripening, but no significant relationship was found at the time of harvest. Differences in the Ravaz index, normalised difference vegetation index, and soil electrical conductivity did not significantly change the GHI score.

Keywords