Heliyon (Jan 2024)
Bolivian natural zeolite as a low-cost adsorbent for the adsorption of cadmium: Isotherms and kinetics
Abstract
Population growth in recent years has led to increased wastewater production and pollution of water resources. This situation also heavily affects Bolivia, so wastewater treatment methods and materials suitable for Bolivian society should be explored. This study investigated the natural Bolivian Zeolite (BZ) and its NaCl-modified structure (NaBZ) as adsorbents for cadmium removal from water. The natural BZ and the modified form NaBZ were investigated by different physicochemical characterization techniques. Furthermore, XPS and FT-IR techniques were used to investigate the adsorption mechanisms. The cadmium adsorption on BZ and NaBZ was analyzed using various mathematical models, and the Langmuir model provided a better description of the experimental adsorption data with cadmium adsorption capacities of 20.2 and 25.6 mg/g for BZ and NaBZ, respectively. The adsorption followed the pseudo-second order kinetics. The effect of different parameters, such as initial cadmium concentration and pH on the adsorption was studied. In addition, the results of the regeneration test indicated that both BZ and NaBZ can be regenerated by using hydrochloric acid (HCl). Finally, the adsorption experiment of BZ and NaBZ on a real water sample (brine from Salar de Uyuni salt flat) containing a mixture of different heavy metals was carried out. The results obtained in this study demonstrate the effectiveness of natural BZ and modified NaBZ in the removal of heavy metals from wastewater.