Journal of Inequalities and Applications (Jan 2009)
Inequalities for Generalized Logarithmic Means
Abstract
For , the generalized logarithmic mean of two positive numbers and is defined as , for , , for , , , , for , , and , for , . In this paper, we prove that , and for all , and the constants , and cannot be improved for the corresponding inequalities. Here , and denote the arithmetic, geometric, and harmonic means of and , respectively.