Fluorescent analogues of BeKm-1 with high and specific activity against the hERG channel
Lucie Vasseur,
Alain Chavanieu,
Stéphanie Combemale,
Cécile Caumes,
Rémy Béroud,
Michel De Waard,
Pierre Ducrot,
Jean A. Boutin,
Gilles Ferry,
Thierry Cens
Affiliations
Lucie Vasseur
Institut des Biomolécules Max Mousseron, Université de Montpellier, Montpellier, France
Alain Chavanieu
Institut des Biomolécules Max Mousseron, Université de Montpellier, Montpellier, France
Stéphanie Combemale
Smartox Biotechnology, Saint-Egrève, France
Cécile Caumes
Smartox Biotechnology, Saint-Egrève, France
Rémy Béroud
Smartox Biotechnology, Saint-Egrève, France
Michel De Waard
Smartox Biotechnology, Saint-Egrève, France; Institut du Thorax, Inserm UMR 1087/CNRS UMR 6291, LabEx « Ion Channels, Science & Therapeutics », Nantes, France
Pierre Ducrot
Pole d'expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
Jean A. Boutin
Pole d'expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
Gilles Ferry
Pole d'expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
Thierry Cens
Institut des Biomolécules Max Mousseron, Université de Montpellier, Montpellier, France; Corresponding author. IBMM, UMR5247, Bât. CRBM, 1919 Route de Mende, 34293 Montpellier, France.
Peptidic toxins that target specifically mammalian channels and receptors can be found in the venom of animals. These toxins are rarely used directly as tools for biochemical experiments, and need to be modified via the attachment of chemical groups (e.g., radioactive or fluorescent moieties). Ideally, such modifications should maintain the toxin specificity and affinity for its target. With the goal of obtaining fluorescent derivatives of BeKm-1, a toxin from the scorpion species Buthus eupeus that selectively inhibits the voltage-gated potassium ion channel hERG, we produced four active analogues using a model of BeKm-1 docking to the outer mouth of the channel. In these BeKm-1 analogues, the natural peptide was linked to the fluorescent cyanine 5 (Cy5) probe via four different linkers at Arg1 or Arg/Lys27. All analogues retained their specificity towards the hERG channel in electrophysiological experiments but displayed a lesser affinity. These results validate our strategy for designing toxin analogues and demonstrate that different chemical groups can be attached to different residues of BeKm-1. Keywords: hERG, BeKm-1, In silico docking, Electrophysiology, Xenopus laevis oocytes