Journal of Groundwater Science and Engineering (Sep 2021)
Quantifying groundwater recharge and discharge for the middle reach of Heihe River of China using isotope mass balance method
Abstract
Quantifying the inflow and outflow of groundwater is essential to understand the interaction between surface water and groundwater. It is difficult to determine these elements in relation to groundwater recharge and discharge to the river, because they cannot be directly measured through site specific study. The methods of isotope mass balance combining with water budget were used to quantify the groundwater recharge from and discharge to the Heihe River, northwest China. The mean isotope ratios of monthly monitoring data for one hydrological year were selected to be the isotope rations of end members in isotope mass balance. The results from the isotope mass balance analysis, incorporating with the 35-year hydrological data, suggest that about 0.464×109 m3/a of runoff flowing out Qilian Mountains is contributed to groundwater recharge (about 28% inflow of the Heihe River), while about 1.163×109 m3/a of runoff is discharged from groundwater in the middle reach of the river, which accounts for about 46% of river runoff in the basin. The analysis offers a unique, broad scale studies and provides valuable insight into surface water-groundwater interaction in arid area.
Keywords