International Journal of Molecular Sciences (Jul 2019)

Acid- and Volume-Sensitive Chloride Currents in Microglial Cells

  • Michael Kittl,
  • Katharina Helm,
  • Marlena Beyreis,
  • Christian Mayr,
  • Martin Gaisberger,
  • Martina Winklmayr,
  • Markus Ritter,
  • Martin Jakab

DOI
https://doi.org/10.3390/ijms20143475
Journal volume & issue
Vol. 20, no. 14
p. 3475

Abstract

Read online

Many cell types express an acid-sensitive outwardly rectifying (ASOR) anion current of an unknown function. We characterized such a current in BV-2 microglial cells and then studied its interrelation with the volume-sensitive outwardly rectifying (VSOR) Cl− current and the effect of acidosis on cell volume regulation. We used patch clamp, the Coulter method, and the pH-sensitive dye BCECF to measure Cl− currents and cell membrane potentials, mean cell volume, and intracellular pH, respectively. The ASOR current activated at pH ≤ 5.0 and displayed an I− > Cl− > gluconate− permeability sequence. When compared to the VSOR current, it was similarly sensitive to DIDS, but less sensitive to DCPIB, and insensitive to tamoxifen. Under acidic conditions, the ASOR current was the dominating Cl− conductance, while the VSOR current was apparently inactivated. Acidification caused cell swelling under isotonic conditions and prevented the regulatory volume decrease under hypotonicity. We conclude that acidification, associated with activation of the ASOR- and inactivation of the VSOR current, massively impairs cell volume homeostasis. ASOR current activation could affect microglial function under acidotoxic conditions, since acidosis is a hallmark of pathophysiological events like inflammation, stroke or ischemia and migration and phagocytosis in microglial cells are closely related to cell volume regulation.

Keywords