HardwareX (Jun 2024)

Design and testing of fabric-based portable soft exoskeleton glove for hand grasping assistance in daily activity

  • Rifky Ismail,
  • Mochammad Ariyanto,
  • Joga D. Setiawan,
  • Taufik Hidayat,
  • Paryanto,
  • Limbang K. Nuswantara

Journal volume & issue
Vol. 18
p. e00537

Abstract

Read online

Hand exoskeleton robots have been developed as rehabilitation robots and assistive devices. Based on the material used, they can be soft or hard exoskeletons. Soft materials such as fabric can be used as a component of the wearable robot to increase comfortability. In this paper, we proposed an affordable soft hand exoskeleton based on fabric and motor-tendon actuation for hand flexion/extension motion assistance in daily activities. On-off control and PI compensator were implemented to regulate finger flexion and extension of the soft exoskeleton. The controllers were embedded into a microcontroller using Simulink software. The input signal command comes from the potentiometer and electromyography (EMG) sensor to drive the flexion/extension movement. Based on the experiments, the proposed controller successfully controlled the exoskeleton hand to facilitate a user in grasping various objects. The proposed soft hand exoskeleton is lightweight, comfortable, portable, and affordable, making it easily manufactured using available hardware and open-source code. The developed soft exoskeleton is a potential assistive device for a person who lost the ability to grasp objects.

Keywords