Genomics Data (Mar 2016)

Transcriptome response to copper heavy metal stress in hard-shelled mussel (Mytilus coruscus)

  • Meiying Xu,
  • Lihua Jiang,
  • Kang-Ning Shen,
  • Changwen Wu,
  • Guangyuan He,
  • Chung-Der Hsiao

Journal volume & issue
Vol. 7
pp. 152 – 154

Abstract

Read online

The hard-shelled mussel (Mytilus coruscus) has considerably one of the most economically important marine shellfish worldwide and considered as a good invertebrate model for ecotoxicity study for a long time. In the present study, we used Illumina sequencing technology (HiSeq2000) to sequence, assemble and annotate the transcriptome of the hard-shelled mussel which challenged with copper pollution. A total of 21,723,913 paired-end clean reads (NCBI SRA database SRX1411195) were generated from HiSeq2000 sequencer and 96,403 contigs (with N50 = 1118 bp) were obtained after de novo assembling with Trinity software. Digital gene expression analysis reveals 1156 unigenes are upregulated and 1681 unigenes are downregulated when challenged with copper. By KEGG pathway enrichment analysis, we found that unigenes in four KEGG pathways (aminoacyl-tRNA biosynthesis, apoptosis, DNA replication and mismatch repair) show significant differential expressed between control and copper treated groups. We hope that the gill transcriptome in copper treated hard-shelled mussel can give useful information to understand how mussel handles with heavy metal stress at molecular level. Keywords: Hard-shelled mussel, Heavy metal, Transcriptome, Ecotoxicity