Modern Electronic Materials (Sep 2020)

Comparison between optical and electrophysical data on free electron concentration in tellurium doped n-GaAs

  • Tatyana G. Yugova,
  • Aleksandr G. Belov,
  • Vladimir E. Kanevskii,
  • Evgeniya I. Kladova,
  • Stanislav N. Knyazev

DOI
https://doi.org/10.3897/j.moem.6.3.64492
Journal volume & issue
Vol. 6, no. 3
pp. 85 – 89

Abstract

Read online Read online Read online

A theoretical model has been developed for determining free electron concentration in n-GaAs from characteristic points in the far infrared region of reflection spectra. We show that when determining free electron concentration one should take into account the pasmon–phonon coupling, otherwise free electron concentration will be overestimated. We have calculated electron concentration Nopt as a function of characteristic wave number ν+ which is described by a second order polynomial. Twenty-five tellurium doped gallium arsenide specimens have been tested for electron concentration using two methods, i.e., the conventional four-probe method (Van der Pau) and the optical method developed by us (the measurements have been carried out at room temperature). We have used the experimental results to plot the dependence of electron concentration based on the Hall data (NHall) on electron concentration based on the optical data (Nopt). This dependence is described by a linear function. We show that the data of optical and electrophysical measurements agree if the electron concentration is Neq = 1.07 · 1018 cm-3. At lower Hall electron concentrations, NHall < Nopt, whereas at higher ones, NHall > Nopt. We have suggested a qualitative model describing these results. We assume that tellurium atoms associate into complexes with arsenic vacancies thus reducing the concentration of electrons. The concentration of arsenic vacancies is lower on the crystal surface, hence the Nopt > NHall condition should be met. With an increase in doping level, more and more tellurium atoms remain electrically active, so the bulk concentration of electrons starts to prevail over the surface one. However with further increase in doping level the NHall/Nopt ratio starts to decrease again and tends to unity. This seems to originate from the fact that the decomposition intensity of the tellurium atom + arsenic vacancy complexes decreases with an increase in doping level.