BMC Research Notes (May 2022)

Biomimetic hydrogel scaffolds via enzymatic reaction for cartilage tissue engineering

  • Mehdi Khanmohammadi,
  • Maryam Jalessi,
  • Alimohamad Asghari

DOI
https://doi.org/10.1186/s13104-022-06060-w
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 7

Abstract

Read online

Abstract Objective We aimed to evaluate cytocompatibility of hyaluronic acid (HA) and gelatin (Gela) conjugation with phenolic groups (Phs) via enzyme-mediated crosslinking. Phenolic moieties were substituted on the backbone of HA (HA-Ph) and Gela (Gela-Ph) and subsequently were subjected for horseradish peroxidase crosslinking in the presence of H2O2 as an electron donor to create a stable hybrid microenvironment for cellular behavior and cartilage tissue engineering. Results Successful synthesis of biopolymers confirmed by NRM and UV–Vis spectrophotometry. The physical characteristic of hydrogels including mechanical properties and water contact angle of hydrogels enhanced with addition of Gela-Ph in HA-based hydrogel. The Gela-Ph showed longest gelation time and highest degradation rate. The cellular studies showed cells did not attach to HA-Ph hydrogel. While, proper cell attachment and proliferation observed on blend hydrogel surface compared with the neat hydrogels which interpret by the existence of cell-adhesive motifs of utilized Gela-Ph in this hydrogel. The encapsulated cells in HA-Ph hydrogel were spheroid and just maintained their viability. Hydrogels containing Gela-Ph, the cells were spindle shape with high degrees of cytoplasmic extension. Overall, the results suggest that hybrid biomimetic hydrogel can provide a superior biological microenvironment for chondrocytes in 3D cartilage tissue engineering.

Keywords