Materials (Feb 2020)

Axial Displacements and Removal Torque Changes of Five Different Implant-Abutment Connections under Static Vertical Loading

  • Ki-Seong Kim,
  • Young-Jun Lim

DOI
https://doi.org/10.3390/ma13030699
Journal volume & issue
Vol. 13, no. 3
p. 699

Abstract

Read online

The aim of this study was to examine the settling of abutments into implants and the removal torque value under static loading. Five different implant-abutment connections were selected (Ext: external butt joint + two-piece abutment; Int-H2: internal hexagon + two-piece abutment; Int-H1: internal hexagon + one-piece abutment; Int-O2: internal octagon + two-piece abutment; Int-O1: internal octagon + one-piece abutment). Ten implant-abutment assemblies were loaded vertically downward with a 700 N load cell at a displacement rate of 1 mm/min in a universal testing machine. The settling of the abutment was obtained from the change in the total length of the entire implant-abutment unit before and after loading using an electronic digital micrometer. The post-loading removal torque value was compared to the initial torque value with a digital torque gauge. The settling values and removal torque values after 700 N static loading were in the following order, respectively: Ext < Int-H1, Int-H2 < Int-O2 < Int-O1 and Int-O2 < Int-H2 < Ext < Int-H1, Int-O1 (α = 0.05). After 700 N vertical static loading, the removal torque values were statistically different from the initial values, and the post-loading values increased in the Int-O1 group and Int-H1 group (α = 0.05) and decreased in the Ext group, Int-H2 group, and Int-O2 group (α = 0.05). On the basis of the results of this study, it should be taken into consideration that a loss of the preload due to the settling effect can lead to screw loosening during a clinical procedure in the molar region where masticatory force is relatively greater.

Keywords