Materials (Feb 2020)
Axial Displacements and Removal Torque Changes of Five Different Implant-Abutment Connections under Static Vertical Loading
Abstract
The aim of this study was to examine the settling of abutments into implants and the removal torque value under static loading. Five different implant-abutment connections were selected (Ext: external butt joint + two-piece abutment; Int-H2: internal hexagon + two-piece abutment; Int-H1: internal hexagon + one-piece abutment; Int-O2: internal octagon + two-piece abutment; Int-O1: internal octagon + one-piece abutment). Ten implant-abutment assemblies were loaded vertically downward with a 700 N load cell at a displacement rate of 1 mm/min in a universal testing machine. The settling of the abutment was obtained from the change in the total length of the entire implant-abutment unit before and after loading using an electronic digital micrometer. The post-loading removal torque value was compared to the initial torque value with a digital torque gauge. The settling values and removal torque values after 700 N static loading were in the following order, respectively: Ext < Int-H1, Int-H2 < Int-O2 < Int-O1 and Int-O2 < Int-H2 < Ext < Int-H1, Int-O1 (α = 0.05). After 700 N vertical static loading, the removal torque values were statistically different from the initial values, and the post-loading values increased in the Int-O1 group and Int-H1 group (α = 0.05) and decreased in the Ext group, Int-H2 group, and Int-O2 group (α = 0.05). On the basis of the results of this study, it should be taken into consideration that a loss of the preload due to the settling effect can lead to screw loosening during a clinical procedure in the molar region where masticatory force is relatively greater.
Keywords