Chemistry (Sep 2024)

Diverse Cobalt(II) and Iron(II/III) Coordination Complexes/Polymers Based on 4′-Pyridyl: 2,2′;6′,2″-Terpyridine: Synthesis, Structures, Catalytic and Anticancer Activities

  • Shu-Yuan Cheng,
  • Qinguo Zhang,
  • Quan Tang,
  • Michelle C. Neary,
  • Shengping Zheng

DOI
https://doi.org/10.3390/chemistry6050064
Journal volume & issue
Vol. 6, no. 5
pp. 1099 – 1110

Abstract

Read online

The success of platinum-based chemotherapeutic drugs for clinical cancer treatments has inspired tremendous research efforts on developing new metallic anticancer agents with improved cytotoxic activity and reduced side effects. 2,2′;6′,2″-Terpyridine and its 4′-substituted derivatives have showed great potential as ligand compartments for designing new anticancer drug candidates involving base metals. In this work, we synthesized a series of cobalt and iron coordination compounds based on 4′-pyridyl-2,2′;6′,2″-terpyridine, including homoleptic complexes, a dinuclear bridged complex and 1- and 2-dimensional coordination polymers/networks. The polymorphism of two homoleptic CoII and FeII complexes has been described along with the structural characterization of a CoII coordination polymer and dinuclear FeIII complex by X-ray crystallography. These compounds were tested preliminarily as precatalysts for the regioselective hydrosilylation of styrene. Their cytotoxic activities against two human breast cancer cell lines (MCF-7 and MDA-MB 468) and a normal breast epithelial cell line (MCF-10A) were investigated in order to observe the best-performing drug candidates.

Keywords