Chemistry (Sep 2024)
Diverse Cobalt(II) and Iron(II/III) Coordination Complexes/Polymers Based on 4′-Pyridyl: 2,2′;6′,2″-Terpyridine: Synthesis, Structures, Catalytic and Anticancer Activities
Abstract
The success of platinum-based chemotherapeutic drugs for clinical cancer treatments has inspired tremendous research efforts on developing new metallic anticancer agents with improved cytotoxic activity and reduced side effects. 2,2′;6′,2″-Terpyridine and its 4′-substituted derivatives have showed great potential as ligand compartments for designing new anticancer drug candidates involving base metals. In this work, we synthesized a series of cobalt and iron coordination compounds based on 4′-pyridyl-2,2′;6′,2″-terpyridine, including homoleptic complexes, a dinuclear bridged complex and 1- and 2-dimensional coordination polymers/networks. The polymorphism of two homoleptic CoII and FeII complexes has been described along with the structural characterization of a CoII coordination polymer and dinuclear FeIII complex by X-ray crystallography. These compounds were tested preliminarily as precatalysts for the regioselective hydrosilylation of styrene. Their cytotoxic activities against two human breast cancer cell lines (MCF-7 and MDA-MB 468) and a normal breast epithelial cell line (MCF-10A) were investigated in order to observe the best-performing drug candidates.
Keywords