Biomolecules (Sep 2021)

Phosphorylated Osteopontin Secreted from Cancer Cells Induces Cancer Cell Motility

  • Yoshinobu Kariya,
  • Midori Oyama,
  • Yukiko Kariya,
  • Yasuhiro Hashimoto

Journal volume & issue
Vol. 11, no. 9
p. 1323


Read online

Osteopontin (OPN) plays a pivotal role in cancer cell invasion and metastasis. Although OPN has a large number of phosphorylation sites, the functional significance of OPN phosphorylation in cancer cell motility remains unclear. In this study, we attempted to investigate whether phosphorylated OPN secreted from cancer cells affect cancer cell migration. Quantitative PCR and Western blot analyses revealed that MDA-MB435S, A549, and H460 cells highly expressed OPN, whereas the OPN expression levels in H358, MIAPaca-2, and Panc-1 cells were quite low or were not detected. Compared with the cancer cell lines with a low OPN expression, the high OPN-expressing cancer cell lines displayed a higher cell migration, and the cell migration was suppressed by the anti-OPN antibody. This was confirmed by the OPN overexpression in H358 cancer cells with a low endogenous OPN. Phos-tag ELISA showed that phosphorylated OPN was abundant in the cell culture media of A549 and H460 cells, but not in those of MDA-MB435S cells. Moreover, the A549 and H460 cell culture media, as well as the MDA-MB435S cell culture media with a kinase treatment increased cancer cell motility, both of which were abrogated by phosphatase treatment or anti-OPN antibodies. These results suggest that phosphorylated OPN secreted from cancer cells regulates cancer cell motility.