Entropy (Aug 2020)

An Efficient Algorithm to Count Tree-Like Graphs with a Given Number of Vertices and Self-Loops

  • Naveed Ahmed Azam,
  • Aleksandar Shurbevski,
  • Hiroshi Nagamochi

DOI
https://doi.org/10.3390/e22090923
Journal volume & issue
Vol. 22, no. 9
p. 923

Abstract

Read online

Graph enumeration with given constraints is an interesting problem considered to be one of the fundamental problems in graph theory, with many applications in natural sciences and engineering such as bio-informatics and computational chemistry. For any two integers n≥1 and Δ≥0, we propose a method to count all non-isomorphic trees with n vertices, Δ self-loops, and no multi-edges based on dynamic programming. To achieve this goal, we count the number of non-isomorphic rooted trees with n vertices, Δ self-loops and no multi-edges, in O(n2(n+Δ(n+Δ·min{n,Δ}))) time and O(n2(Δ2+1)) space, since every tree can be uniquely viewed as a rooted tree by either regarding its unicentroid as the root, or in the case of bicentroid, by introducing a virtual vertex on the bicentroid and assuming the virtual vertex to be the root. By this result, we get a lower bound and an upper bound on the number of tree-like polymer topologies of chemical compounds with any “cycle rank”.

Keywords