PTIR1 acts as an isoform of DDX58 and promotes tumor immune resistance through activation of UCHL5
Jia Song,
Yang Liu,
Yue Yin,
Hui Wang,
Xin Zhang,
Yang Li,
Xuyang Zhao,
Guangze Zhang,
Xiangyan Meng,
Yan Jin,
Dan Lu,
Yuxin Yin
Affiliations
Jia Song
Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
Yang Liu
Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
Yue Yin
Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
Hui Wang
Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
Xin Zhang
Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
Yang Li
Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
Xuyang Zhao
Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
Guangze Zhang
Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
Xiangyan Meng
Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
Yan Jin
Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
Dan Lu
Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, P.R. China; Corresponding author
Yuxin Yin
Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, P.R. China; Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China; Corresponding author
Summary: Cancer evades host immune surveillance by virtue of poor immunogenicity. Here, we report an immune suppressor, designated as PTIR1, that acts as a promotor of tumor immune resistance. PTIR1 is selectively induced in human cancers via alternative splicing of DDX58 (RIG-I), and its induction is closely related to poor outcome in patients with cancer. Through blocking the recruitment of leukocytes, PTIR1 facilitates cancer immune escape and tumor-intrinsic resistance to immunotherapeutic treatments. Unlike RIG-I, PTIR1 is capable of binding to the C terminus of UCHL5 and activates its ubiquitinating function, which in turn inhibits immunoproteasome activity and limits neoantigen processing and presentation, consequently blocking T cell recognition and attack against cancer. Moreover, we find that the adenosine deaminase ADAR1 induces A-to-I RNA editing on DDX58 transcript, thus triggering PTIR1 production. Collectively, our data uncover the immunosuppressive role of PTIR1 in tumorigenesis and propose that ADAR1-PTIR1-UCHL5 signaling is a potential cancer immunotherapeutic target.