In Autumn 2020, DOAJ will be relaunching with a new website with updated functionality, improved search, and a simplified application form. More information is available on our blog. Our API is also changing.

Hide this message

Connectivity Evaluation and Planning of a River-Lake System in East China Based on Graph Theory

Mathematical Problems in Engineering. 2018;2018 DOI 10.1155/2018/1361867

 

Journal Homepage

Journal Title: Mathematical Problems in Engineering

ISSN: 1024-123X (Print); 1563-5147 (Online)

Publisher: Hindawi Limited

LCC Subject Category: Technology: Engineering (General). Civil engineering (General) | Science: Mathematics

Country of publisher: United Kingdom

Language of fulltext: English

Full-text formats available: PDF, HTML, ePUB, XML

 

AUTHORS


Jing Chen (Key Laboratory of Efficient Irrigation-Drainage and Agricultural Soil-Water Environment in Southern China (Ministry of Education), College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China)

Chenguang Xiao (Key Laboratory of Efficient Irrigation-Drainage and Agricultural Soil-Water Environment in Southern China (Ministry of Education), College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China)

Dan Chen (Key Laboratory of Efficient Irrigation-Drainage and Agricultural Soil-Water Environment in Southern China (Ministry of Education), College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China)

EDITORIAL INFORMATION

Blind peer review

Editorial Board

Instructions for authors

Time From Submission to Publication: 26 weeks

 

Abstract | Full Text

The connectivity of the stream network plays an important role in water-mediated transport and river environments, which are threatened by the rugged development process in China. In this study, based on graph theory, a connectivity evaluation index system was built, which includes the Edge Connectivity, Edge-Node rate, Connectivity Reliability, and Edge Weight. The new evaluation standard and calculation method of each index is presented. The river-lake system of Fenhu industrial park in Jiangsu China is simplified to an Edge-Node graph and evaluated by the index system as a case study. The results indicate that the river-lake system of the research area has low Edge Connectivity, a high Edge-Node rate, and high reliability in the current connectivity level. In addition, the Edge Weight index of several channels does not satisfy the standard of the Basic Edge Weight. To solve the connectivity problems, specific project plans include broadening the unqualified channel and building canals linked with the low-connectivity lakes. The results show that, after the planning, the connectivity of the stream network in Fenhu industrial park will increase, and the connectivity evaluation index system is useful in the study area.