PLoS ONE (Jan 2018)
Evidence that microRNAs are part of the molecular toolkit regulating adult reproductive diapause in the mosquito, Culex pipiens.
Abstract
For many insects, diapause is the primary mechanism for surviving unfavorable seasons. Some aspects of diapause regulation are well known, but we still lack a mechanistic understanding of molecular mechanisms that control the diapause pathway. Accumulating evidence suggests microRNAs regulate diapause in evolutionarily diverse insect species including flesh flies and moths, and, it is likely that microRNAs regulate multiple characteristics of diapause, including arrested egg follicle development and fat hypertrophy, in females of the Northern house mosquito, Culex pipiens. To investigate microRNA regulation of diapause in this species, we measured changes in egg follicle development and total lipid content over 22 days following adult emergence. We also evaluated changes in the abundance of candidate microRNAs associated with these physical changes during the same time frame. We found egg follicle size and lipid content were nearly the same in diapausing and nondiapausing females on the day of adult emergence, and then diverged over time such that by day 22 diapausing females had significantly smaller egg follicles and higher total lipids than their nondiapausing counterparts. Several microRNAs associated with lipid metabolism in insects, including miR-14-3p, miR-277-3p, and miR-305-5p, were underexpressed in diapausing females compared to nondiapausing females on the day of adult emergence, which suggests microRNA regulation occurs ahead of observed changes in these two features of the diapause phenotype. We also found miR-309-3p, miR-375-3p which stimulate ovarian development in other mosquito species, were underexpressed in diapausing females of Cx. pipiens at times after diapause is fully established and may be responsible for the arrest in ovarian development in this species. Taken together, our results demonstrate that changes in the abundance of some microRNAs is associated with phenotypic changes in diapause Cx. pipiens and suggests this epigenetic mechanism is part of the molecular toolkit regulating diapause.