Bioengineering (Apr 2025)
Causal Links Between Corneal Biomechanics and Myopia: Evidence from Bidirectional Mendelian Randomization in the UK Biobank
Abstract
Background: Myopia is a leading cause of visual impairment worldwide, and accumulating evidence suggests that biomechanics may be closely linked to its development. Understanding this relationship may help clarify the underlying mechanisms of myopia and guide treatment strategies. The aim of the study is to investigate the causal relationship between myopia and corneal biomechanics using the UK Biobank (UKB) database. Methods: Data from 11,064 eyes in the UKB, including refraction results and Ocular Response Analyzer (ORA) measurements, were analyzed. Eyes were categorized by spherical equivalent (SE) into emmetropia, mild myopia, moderate myopia, and high myopia. One-way ANOVA assessed differences in corneal biomechanical parameters across the varying myopia groups, while Quantile Regression (QR) explored the relationship between these parameters and myopia severity across the different quantiles. A Mendelian randomization (MR) analysis was employed to explore the causal relationships. Results: Significant differences in corneal biomechanical parameters and intraocular pressure (IOP) were observed across the myopia levels (p p = 0.004) and CRF (OR = 0.9946, p = 0.002) values were risk factors for myopia, while no causal effect was found when the myopia was treated as the exposure and corneal biomechanics as the outcome. Conclusions: This study establishes a causal relationship where reduced corneal biomechanics contribute to myopia, while myopia itself does not directly affect biomechanics. Corneal biomechanics could serve as a biomarker for assessing high myopia risk. These findings offer new insights into high myopia’s pathological mechanisms and targeted prevention.
Keywords