International Journal of Distributed Sensor Networks (May 2019)

Traffic congestion prediction based on GPS trajectory data

  • Shuming Sun,
  • Juan Chen,
  • Jian Sun

DOI
https://doi.org/10.1177/1550147719847440
Journal volume & issue
Vol. 15

Abstract

Read online

Since speed sensors are not as widely used as GPS devices, the traffic congestion level is predicted based on processed GPS trajectory data in this article. Hidden Markov model is used to match GPS trajectory data to road network and the average speed of road sections can be estimated by adjacent GPS trajectory data. Four deep learning models including convolutional neural network, recurrent neural network, long short-term memory, and gated recurrent unit and three conventional machine learning models including autoregressive integrated moving average model, support vector regression, and ridge regression are used to perform congestion level prediction. According to the experimental results, deep learning models obtain higher accuracy in traffic congestion prediction compared with conventional machine learning models.