IEEE Access (Jan 2020)

A Ka-Band Receiver Front-End With Noise Injection Calibration Circuit for CubeSats Inter-Satellite Links

  • Federico Alimenti,
  • Paolo Mezzanotte,
  • Guendalina Simoncini,
  • Valentina Palazzi,
  • Raffaele Salvati,
  • Giordano Cicioni,
  • Luca Roselli,
  • Federico Dogo,
  • Simone Pauletto,
  • Mario Fragiacomo,
  • Anna Gregorio

DOI
https://doi.org/10.1109/ACCESS.2020.3000675
Journal volume & issue
Vol. 8
pp. 106785 – 106798

Abstract

Read online

This paper proposes a Ka-band receiver front-end for future CubeSats Low-Earth Orbit (LEO) to Geostationary (GEO) inter-satellite links. The receiver is able to support very high data rates (up to 100 Mbit/s) in Quadrature Phase-Shift Keying (QPSK) when in the line of sight of a GEO satellite that is equipped with a steerable 70-cm antenna and transmitting a 25-W signal. The originality of the proposed approach is twofold. First we will demonstrate the receiver feasibility based on a class of miniaturized and low-cost microwave integrated circuits, currently available on the market. In particular, our receiver is based on a novel combination of integrated Low-Noise Amplifiers (LNA) with an image rejection filter, the latter exploiting the Substrate Integrated Waveguide (SIW) technology. An optimization of the via placement proved to be able to reduce the need for shielding apparatuses, thus simplifying the mechanics and reducing mass, volume and hardware costs. Secondly, we will propose a noise injection circuit capable of measuring and calibrating the receiver gain, also during in-orbit operation. Self testing capabilities are particularly relevant for CubeSats because the usage of commercial components poses serious reliability issues.

Keywords