全球能源互联网
(Sep 2024)
基于改进高斯混合模型的变电站负荷聚类算法
- 余浩,
- 高镱滈,
- 潘险险,
- 徐衍会,
- 李雪松,
- 孙宇航
Affiliations
- 余浩
- 广东电网有限责任公司电网规划研究中心,广东省 广州市 510030
- 高镱滈
- 华北电力大学电气与电子工程学院,北京市 昌平区 102206
- 潘险险
- 广东电网有限责任公司电网规划研究中心,广东省 广州市 510030
- 徐衍会
- 华北电力大学电气与电子工程学院,北京市 昌平区 102206
- 李雪松
- 华北电力大学电气与电子工程学院,北京市 昌平区 102206
- 孙宇航
- 华北电力大学电气与电子工程学院,北京市 昌平区 102206
- DOI
-
https://doi.org/10.19705/j.cnki.issn2096-5125.2024.05.012
- Journal volume & issue
-
Vol. 7,
no. 5
pp.
591
– 601
Abstract
Read online
针对传统高斯混合模型(Gaussian mixture model,GMM)聚类算法中计算复杂、收敛速度慢和人为确定聚类数目时存在盲目性和主观性等不足,提出了一种基于改进GMM的变电站负荷聚类算法。以传统GMM聚类算法为基础,采用k均值(k-means)算法确定初始聚类中心。减少了GMM聚类算法迭代步骤,提高了输出结果的稳定性。输出不同聚类数下聚类结果的Davies-Bouldin(DB)指标、Calinski-Harabasz(CH)指标和轮廓系数(silhouette coefficient,SC),应用熵权法确定不同评价指标所占权重,构建聚类评价混合指数(cluster evaluation mixed index,CEM)。将聚类评价混合指数最大值对应的聚类个数作为最佳聚类数目,再次输入到改进GMM聚类算法中,得到变电站负荷聚类结果和聚类中心。结果表明,所提方法增强了传统GMM聚类算法的计算速度和稳定性,对变电站负荷具有良好的聚类综合能力,有助于实现聚类结果最优化。
Keywords
WeChat QR code