Frontiers in Plant Science (Jan 2025)
A new maturity recognition algorithm for Xinhui citrus based on improved YOLOv8
Abstract
Current object detection algorithms lack accuracy in detecting citrus maturity color, and feature extraction needs improvement. In automated harvesting, accurate maturity detection reduces waste caused by incorrect evaluations. To address this issue, this study proposes an improved YOLOv8-based method for detecting Xinhui citrus maturity. GhostConv was introduced to replace the ordinary convolution in the Head of YOLOv8, reducing the number of parameters in the model and enhancing detection accuracy. The CARAFE (Content-Aware Reassembly of Features) upsampling operator was used to replace the conventional upsampling operation, retaining more details through feature reorganization and expansion. Additionally, the MCA (Multidimensional Collaborative Attention) mechanism was introduced to focus on capturing the local feature interactions between feature mapping channels, enabling the model to more accurately extract detailed features, thus further improving the accuracy of citrus color identification. Experimental results show that the precision, recall, and average precision of the improved YOLOv8 on the test set are 88.6%, 93.1%, and 93.4%, respectively. Compared to the original model, the improved YOLOv8 achieved increases of 16.5%, 20.2%, and 14.7%, respectively, and the parameter volume was reduced by 0.57%. This paper aims to improve the model for detecting Xinhui citrus maturity in complex orchards, supporting automated fruit-picking systems.
Keywords