Atmosphere (Mar 2023)

Association between the Rail Breakage Frequency in Beijing–Tianjin–Hebei High-Speed Railway and the Eurasian Atmospheric Circulation Anomaly

  • Liwei Huo,
  • Linman Xiao,
  • Ji Wang,
  • Dachao Jin,
  • Yinglong Shi,
  • Qian Zhang

DOI
https://doi.org/10.3390/atmos14030561
Journal volume & issue
Vol. 14, no. 3
p. 561

Abstract

Read online

The spatiotemporal variations in the frequency of rail breakage (FRB) in the high-speed railway of the Beijing–Tianjin–Hebei (BTH) region and its relationship with atmospheric circulation anomalies and surface temperature are analyzed in this study, based on the monthly FRB data of BTH region and the ERA5 reanalysis data from 2010 to 2020. The frequency of rail breaking in the BTH region varies significantly depending on the season, with winter having the highest incidence. In fact, more than 60% of the total FRB in the BTH region occur during the winter season. Both the annual total and winter FRB in BTH region are very unevenly distributed in time and space, and both are relatively similar in spatial distribution patterns. The FRB in Beijing railway section is the most frequent, followed by Tianjin, and the lowest frequency is observed in Chengde. It is found that the increasing winter FRB in BTH region and the intensified Siberian high are related. When the Siberian high is strong, the East Asian winter monsoon and the East Asian Trough in the middle troposphere could be enhanced through atmospheric teleconnection, which is conducive to the cold air advection from northern high latitudes to the BTH region, resulting in an abnormally cold winter in BTH region, thus providing low temperatures for broken rails on high-speed railways, and vice versa. The research results might provide a scientific basis for monitoring and predicting the broken rails in BTH high-speed railway during winter, thereby providing a guarantee for the safe operation of the high-speed railway.

Keywords