Materials Today Bio (Oct 2024)

Polymeric PD1/PDL1 bispecific antibody enhances immune checkpoint blockade therapy

  • Fuxin Xue,
  • Xitong Ren,
  • Chaoying Kong,
  • Jianfeng Wang,
  • Linlin Liu,
  • Junli Hu,
  • Na Shen,
  • Zhaohui Tang

Journal volume & issue
Vol. 28
p. 101239

Abstract

Read online

Immune checkpoint blockade (ICB) therapy, particularly PD1/PDL1 inhibition, has demonstrated success in bolstering durable responses in patients. However, the response rate remains below 30 %. In this study, we developed a polymeric bispecific antibody (BsAb) targeting PD1/PDL1 to enhance ICB therapy. Specifically, poly(L-glutamic acid) (PGLU) was conjugated with a double cyclic Fc binding peptide, Fc-III-4C, through condensation reactions between the -COOH group of PGLU and the -NH2 group of Fc-III-4C. This conjugate was then mixed with αPD1 and αPDL1 monoclonal antibodies (mAbs) in an aqueous solution. Mechanistically, the PD1/PDL1 BsAb (BsAbαPD1+αPDL1) acts as a bridge between tumor cells and CD8+ T cells, continuously activating CD8+ T cells to a greater extent. This leads to significantly suppressed tumor growth and prolonged survival in a mouse model of colon cancer compared to treatment with either a single mAb or a mixture of free mAbs. The tumor suppression rate achieved by the BsAbαPD1+αPDL1 was 90.1 %, with a corresponding survival rate of 83.3 % after 48 days. Thus, this study underscores the effectiveness of the BsAbαPD1+αPDL1 as a synchronizing T cell engager and dual ICBs, offering theoretical guidance for clinical ICB therapy.

Keywords