Atmosphere (Dec 2023)

Quasi-Synchronous Variations in the OLR of NOAA and Ionospheric Ne of CSES of Three Earthquakes in Xinjiang, January 2020

  • Chen Yu,
  • Jing Cui,
  • Wanchun Zhang,
  • Weiyu Ma,
  • Jing Ren,
  • Bo Su,
  • Jianping Huang

DOI
https://doi.org/10.3390/atmos14121828
Journal volume & issue
Vol. 14, no. 12
p. 1828

Abstract

Read online

The successive tidal force (TF) at the epicenter of the Jiashi M6.6 earthquake in Xinjiang, China, was calculated for the period from 13 December 2019 to 10 February 2020. With periodic changes in tide-generating forces, the variations in the electron density (Ne) data recorded by the China Seismo-Electromagnetic Satellite (CSES) and outgoing longwave radiation (OLR) data provided by NOAA on a large scale at N25°–N55°, E65°–E135° were studied. The results show that (1) in the four cycles during which the TF changes from trough to peak, the earthquake occurred during one peak time when the OLR changed around the epicenter via calm–rise processions and in other similar TF phases, and neither an increase in the OLR nor earthquake occurred. (2) With a change in the TF, the spatiotemporal evolution of the OLR from seismogenic processes to its occurrence was as follows: microenhancement–enhancement–microattenuation–enhancement–calmness; this is consistent with the evolution of outward infrared radiation when rocks break under stress loading: microrupture–rupture–locking–accelerated rupture–rupture. (3) Ne increased significantly during the seismogenic period and was basically consistent with OLR enhancement. The results indicate that as the TF increases, the Earth’s stress accumulates at a critical point, and the OLR increases and transfers upward. The theoretical hypothesis underlying the conducted study is that the accumulated electrons on the surface cause negatively charged electrons in the atmosphere to move upward, resulting in an increase in ionospheric Ne near the epicenter, which reveals the homology of seismic stress variations in the spatial coupling process. The quasi-synchronous change process of these three factors suggests that the TF changed the process of the stress accumulation–imbalance in the interior structure of this earthquake and has the effect of triggering the earthquake, and the spatiotemporal variations in the OLR and ionospheric Ne could be indirect reflections of in situ stress.

Keywords