Influence of Bilberry Extract on Neuronal Cell Toxicity
Svenja König,
Tamara Bakuradze,
Sandy Jesser,
Harshitha Ashoka Sreeja,
Max J. Carlsson,
Jörg Fahrer,
Stefan Kins,
Elke Richling
Affiliations
Svenja König
Division of Human Biology and Neurobiology, Department of Biology, University of Kaiserslautern—Landau, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
Tamara Bakuradze
Division of Food Chemistry and Toxicology, Department of Chemistry, University of Kaiserslautern—Landau, Erwin-Schrödinger-Straße 52, D-67663 Kaiserslautern, Germany
Sandy Jesser
Division of Food Chemistry and Toxicology, Department of Chemistry, University of Kaiserslautern—Landau, Erwin-Schrödinger-Straße 52, D-67663 Kaiserslautern, Germany
Harshitha Ashoka Sreeja
Division of Human Biology and Neurobiology, Department of Biology, University of Kaiserslautern—Landau, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
Max J. Carlsson
Division of Food Chemistry and Toxicology, Department of Chemistry, University of Kaiserslautern—Landau, Erwin-Schrödinger-Straße 52, D-67663 Kaiserslautern, Germany
Jörg Fahrer
Division of Food Chemistry and Toxicology, Department of Chemistry, University of Kaiserslautern—Landau, Erwin-Schrödinger-Straße 52, D-67663 Kaiserslautern, Germany
Stefan Kins
Division of Human Biology and Neurobiology, Department of Biology, University of Kaiserslautern—Landau, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
Elke Richling
Division of Food Chemistry and Toxicology, Department of Chemistry, University of Kaiserslautern—Landau, Erwin-Schrödinger-Straße 52, D-67663 Kaiserslautern, Germany
Increased intake of dietary antioxidants such as anthocyanins, which are enriched in colourful fruits, is a promising alternative to reduce the risk of degenerative diseases such as Alzheimer’s Disease (AD). Since Amyloid β (Aβ) is one of the key components contributing to AD pathology, probably by reactive oxygen species (ROS) induction, this study investigated the preventive effect of anthocyanin-rich bilberry extract (BE) and its anthocyanin fraction (ACN) on ROS generation and cell toxicity. The results showed a significant and concentration-dependent decrease in neuroblastoma cell (SH-SY5Y) viability by BE or ACN, whereas no cell toxicity was observed in HeLa cells. Incubation with BE and ACN for 24 h diminished the generation of induced ROS levels in SH-SY5Y and HeLa cells. In addition, low concentrations of BE (1–5 µg/mL) showed protective effects against Aβ-induced cytotoxicity in SH-SY5Y cells. In conclusion, our results suggest antioxidant and protective effects of BE and ACN, which could potentially be used to delay the course of neurodegenerative diseases such as AD. Further studies are needed to clarify the high potential of anthocyanins and their in vivo metabolites on neuronal function.