Publicación Electrónica de la Asociación Paleontológica Argentina (Mar 2024)
A GUIDE TO THE RECONSTRUCTION OF THE AUTOPODIA OF TETRAPODA THROUGH 3D TECHNOLOGY: THE CASE OF NEUQUENSAURUS AUSTRALIS (SAUROPODA: TITANOSAURIA)
Abstract
This contribution presents a detailed methodology for reconstructing the anterior and posterior autopodia (manus and pes elements) of the sauropod dinosaur Neuquensaurus australis. The study utilizes various techniques, including digital three-dimensional (3D) scanning, reconstruction, retrodeformation, scaling, texturing, rendering, 3D printing, and mounting, to create accurate representations of the fossil elements. Two different scanning devices were employed to capture high-resolution 3D models of the fossil elements. The scanned data was processed to align and fuse the points, resulting in detailed 3D models. Related taxa such as Argyrosaurus superbus and 3D modeling techniques were used to reconstruct missing elements. Scaling calculations were performed based on comparative analysis with other titanosaurs to estimate the size of the missing elements. Retrodeformation was applied to correct taphonomic distortion and restore the original shape of the fossil elements. Texturing and rendering techniques were also employed to enhance the visual quality of the 3D models. The 3D models were subsequently 3D printed using white polylactic acid (PLA) filament. Creating physical replicas is useful for further studies, educational purposes, and public outreach. We highlight the advantages of 3D printing in paleontology, such as cost-effectiveness and accessibility, as it creates accurate replicas without compromising the original fossils. Overall, the presented methodologies demonstrate the potential of 3D technologies in paleontological research. The combination of scanning, reconstruction, retrodeformation, scaling, texturing, rendering, and 3D printing provides a comprehensive approach to accurately reconstructing and visualizing fossil elements. These techniques contribute to a better understanding of extinct vertebrates and their biomechanics.
Keywords