BMC Cancer (May 2021)

Characterization of alternative splicing events and prognostic signatures in breast cancer

  • Pihua Han,
  • Jingjun Zhu,
  • Guang Feng,
  • Zizhang Wang,
  • Yanni Ding

DOI
https://doi.org/10.1186/s12885-021-08305-6
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background Breast cancer (BRCA) is one of the most common cancers worldwide. Abnormal alternative splicing (AS) frequently observed in cancers. This study aims to demonstrate AS events and signatures that might serve as prognostic indicators for BRCA. Methods Original data for all seven types of splice events were obtained from TCGA SpliceSeq database. RNA-seq and clinical data of BRCA cohorts were downloaded from TCGA database. Survival-associated AS events in BRCA were analyzed by univariate COX proportional hazards regression model. Prognostic signatures were constructed for prognosis prediction in patients with BRCA based on survival-associated AS events. Pearson correlation analysis was performed to measure the correlation between the expression of splicing factors (SFs) and the percent spliced in (PSI) values of AS events. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were conducted to demonstrate pathways in which survival-associated AS event is enriched. Results A total of 45,421 AS events in 21,232 genes were identified. Among them, 1121 AS events in 931 genes significantly correlated with survival for BRCA. The established AS prognostic signatures of seven types could accurately predict BRCA prognosis. The comprehensive AS signature could serve as independent prognostic factor for BRCA. A SF-AS regulatory network was therefore established based on the correlation between the expression levels of SFs and PSI values of AS events. Conclusions This study revealed survival-associated AS events and signatures that may help predict the survival outcomes of patients with BRCA. Additionally, the constructed SF-AS networks in BRCA can reveal the underlying regulatory mechanisms in BRCA.

Keywords