Materials (Mar 2023)

Spent Yeast-Derived 3D Porous Carbon Skeleton as Low-Cost D-Mannitol Supporting Material for Medium Temperature Thermal Energy Storage

  • Xifeng Lv,
  • Hui Cao,
  • Guohua Li,
  • Mengying Zhu,
  • Wei Ji,
  • Kai Wang,
  • Changwei Zhang,
  • Changsheng Su,
  • Wenqiang Ren,
  • Di Cai

DOI
https://doi.org/10.3390/ma16072569
Journal volume & issue
Vol. 16, no. 7
p. 2569

Abstract

Read online

Shape-stable phase change materials (ss-PCMs) are extensively applied in renewable energy storage. The core for realizing high latent heat and good thermal stability of ss-PCMs is the designation of suitable supporting skeletons that can effectively preserve the PCMs from leaking out. In this study, ss-PCMs impregnated by D-mannitol were prepared using a waste yeast-derived carbon (YC) as the support material. YC possesses a large surface area (669.90 m2/g), which can provide sufficient phase transition space and nucleation sites for D-mannitol. The results indicated that a reduced supercooling of 44.76 °C for YC/D-mannitol ss-PCMs can be realized. The ss-PCMs also exhibited good cycling stability, with latent heat loss rates of 4.00% and 2.15% after 200 thermal cycles. We further demonstrate that YC provides restricted space for mannitol to inhibit the supercooling mechanism. The YC/D-mannitol ss-PCMs exhibited great promise for solar heat storage and industrial waste heat recovery in the medium temperature domain.

Keywords