Advanced Nonlinear Studies (Sep 2024)
Solutions to the coupled Schrödinger systems with steep potential well and critical exponent
Abstract
In the present paper, we consider the coupled Schrödinger systems with critical exponent:−Δui+λVi(x)+aiui=∑j=1dβijuj3uiui in R3,ui∈H1(RN),i=1,2,…,d, $$\begin{cases}-{\Delta}{u}_{i}+\left(\lambda {V}_{i}\left(x\right)+{a}_{i}\right){u}_{i}=\sum _{j=1}^{d}{\beta }_{ij}{\left\vert {u}_{j}\right\vert }^{3}\left\vert {u}_{i}\right\vert {u}_{i}\quad \,\text{in}\,{\mathbb{R}}^{3},\quad \hfill \\ {u}_{i}\in {H}^{1}\left({\mathbb{R}}^{N}\right),\quad i=1,2,\dots ,d,\quad \hfill \end{cases}$$ where d ≥ 2, β ii > 0 for every i, β ij = β ji when i ≠ j, λ > 0 is a parameter and 0≤Vi∈Lloc ∞RN $0\le {V}_{i}\in {L}_{\text{loc\,}}^{\infty }\left({\mathbb{R}}^{N}\right)$ have a common bottom int Vi−1(0) ${V}_{i}^{-1}\left(0\right)$ composed of ℓ0ℓ0≥1 ${\ell }_{0}\left({\ell }_{0}\ge 1\right)$ connected components Ωkk=1ℓ0 ${\left\{{{\Omega}}_{k}\right\}}_{k=1}^{{\ell }_{0}}$ , where int Vi−1(0) ${V}_{i}^{-1}\left(0\right)$ is the interior of the zero set Vi−1(0)=x∈RN∣Vi(x)=0 ${V}_{i}^{-1}\left(0\right)=\left\{x\in {\mathbb{R}}^{N}\mid {V}_{i}\left(x\right)=0\right\}$ of V i. We study the existence of least energy positive solutions to this system which are trapped near the zero sets int Vi−1(0) ${V}_{i}^{-1}\left(0\right)$ for λ > 0 large for weakly cooperative case βij>0small $\left({\beta }_{ij}{ >}0 \mathrm{s}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{l}\right)$ and for purely competitive case βij≤0 $\left({\beta }_{ij}\le 0\right)$ . Besides, when d = 2, we construct a one-bump fully nontrivial solution which is localised at one prescribed components Ωkk=1ℓ ${\left\{{{\Omega}}_{k}\right\}}_{k=1}^{\ell }$ for large λ.
Keywords