Cellular and Molecular Gastroenterology and Hepatology (Jan 2019)

Deletion of C-C Motif Chemokine Ligand 5 Worsens Invariant Natural Killer T-Cell–Mediated Hepatitis via Compensatory Up-regulation of CXCR2–Related Chemokine ActivitySummary

  • Lili Chen,
  • Jinyang Gu,
  • Yihan Qian,
  • Meng Li,
  • Yongbing Qian,
  • Min Xu,
  • Jichang Li,
  • Yankai Wen,
  • Lei Xia,
  • Jiaxin Li,
  • Qiang Xia,
  • Xiaoni Kong,
  • Hailong Wu

Journal volume & issue
Vol. 7, no. 3
pp. 623 – 639

Abstract

Read online

Background & Aims: Chemokine-mediated immune cell recruitment plays pivotal roles in liver inflammation. C-C motif chemokine ligand 5 (CCL5) has been shown to be responsible for the recruitment of monocytes/macrophages and has been implicated in various liver diseases, including nonalcoholic fatty liver disease, fibrosis, and hepatocellular carcinoma. Previous studies have also shown that inhibition of CCL5 appears to be a promising therapeutic approach for several chronic liver diseases. However, whether blocking CCL5 could benefit immune cell–mediated hepatitis remains largely elusive. Methods: By adopting a specific agonist, alpha-galactosylceramide (α-Galcer), of invariant natural killer T cells (iNKTs), we investigated the function and mechanism of CCL5 in the iNKT induced murine hepatitis model. Results: We found significantly increased CCL5 expression in α-Galcer–induced hepatitis murine model. Such an increase in CCL5 is mainly enriched in non-parenchymal cells such as macrophages and iNKTs but not in hepatocytes. Surprisingly, CCL5 blockage by genetic deletion of Ccl5 does not affect the α-Galcer–induced iNKT activation but greatly worsens α-Galcer–induced liver injury accompanied by an increased hepatic neutrophil infiltration. Mechanistically, we demonstrated that greater neutrophil accumulation in the liver is responsible for the enhanced liver injury in Ccl5-/- mice. Such an increased hepatic neutrophil infiltration is mainly caused by an enhanced CXCL1-CXCR2 signal in Ccl5-/- mice. Therapeutically, either antibody-mediated neutrophil depletion or a CXCR2 antagonist, SB225002, mediated CXCR2 signaling blockage significantly ameliorated α-Galcer–induced liver injury in Ccl5-/- mice. Conclusions: Our present study demonstrates that (1) α-Galcer–induced murine hepatitis could greatly induce CCL5 production in macrophages and iNKT cells; (2) loss of CCL5 could enhance CXCL1 expression in hepatocytes and activate CXCL1-CXCR2 axis in neutrophils to augment their hepatic infiltration; and (3) neutrophil depletion or blockage of CXCL1-CXCR2 axis greatly improves α-Galcer–induced liver injury in Ccl5-/- mice. This study suggests that clinical utilization of CCL5 blockage may compensatorily induce the activation of other chemokine pathways to enhance neutrophil recruitment and liver injury in hepatitis. Keywords: CCL5, Invariant NKT, Neutrophils, CXCL1, CXCR2