Radiation Oncology (Jun 2019)

Deep inspiration breath-hold for left-sided breast irradiation: Analysis of dose-mass histograms and the impact of lung expansion

  • Markus Oechsner,
  • Mathias Düsberg,
  • Kai Joachim Borm,
  • Stephanie Elisabeth Combs,
  • Jan Jakob Wilkens,
  • Marciana Nona Duma

DOI
https://doi.org/10.1186/s13014-019-1293-1
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background The aim of this study was to compare dose-volume histogram (DVH) with dose-mass histogram (DMH) parameters for treatment of left-sided breast cancer in deep inspiration breath-hold (DIBH) and free breathing (FB). Additionally, lung expansion and anatomical factors were analyzed and correlated to dose differences. Methods For 31 patients 3D conformal radiation therapy plans were retrospectively calculated on FB and DIBH CTs in the treatment planning system. The calculated doses, structures and CT data were transferred into MATLAB and DVHs and DMHs were calculated. Mean doses (Dmean), volumes and masses receiving certain doses (Vx, Mx) were determined for the left lung and the heart. Additionally, expansion of the left lung was evaluated using deformable image registration. Differences in DVH and DMH dose parameters between FB and DIBH were statistically analyzed and correlated to lung expansion and anatomical factors. Results DIBH reduced Dmean (DVH) and relative V20 (V20 [%]) of the left lung in all patients, on average by − 19 ± 9% (mean ± standard deviation) and − 24 ± 10%. Dmean (DMH) and M20 [%] were also significantly reduced (− 12 ± 11%, − 16 ± 13%), however 4 patients had higher DMH values in DIBH than in FB. Linear regression showed good correlations between DVH and DMH parameters, e.g. a dosimetric benefit smaller than 8.4% for Dmean (DVH) in DIBH indicated more irradiated lung mass in DIBH than in FB. The mean expansion of the left lung between FB and DIBH was 1.5 ± 2.4 mm (left), 16.0 ± 4.0 mm (anterior) and 12.2 ± 4.6 mm (caudal). No significant correlations were found between expansions and differences in Dmean for the left lung. The heart dose in DIBH was reduced in all patients by 53% (Dmean) and this dosimetric benefit correlated to lung expansion in anterior. Conclusions Treatment of left-sided breast cancer in DIBH reduced dose to the heart and in most cases the lung dose, relative irradiated lung volume and lung mass. A mass related dosimetric benefit in DIBH can be achieved as long as the volume related benefit is about ≥8–9%. The lung expansion (breathing pattern) showed no impact on lung dose, but on heart dose. A stronger chest breathing (anterior expansion) for DIBH seems to be more beneficial than abdominal breathing.

Keywords