Remote Sensing (Jun 2019)
A Fisheye Image Matching Method Boosted by Recursive Search Space for Close Range Photogrammetry
Abstract
Close range photogrammetry (CRP) with large field-of-view images has become widespread in recent years, especially in terrestrial mobile mapping systems (TMMS). However, feature-based matching (FBM) with omnidirectional images (e.g., fisheye) is challenging even for state-of-the-art methods, such as the scale-invariant feature transform (SIFT), because of the strong scale change from image to image. This paper proposes an approach to boost FBM techniques on fisheye images with recursive reduction of the search space based on epipolar geometry. The epipolar restriction is calculated with the equidistant mathematical model and the initial exterior orientation parameters (EOPs) determined with navigation sensors from TMMS. The proposed method was assessed with data sets acquired by a low-cost TMMS. The TMMS is composed of a calibrated poly-dioptric system (Ricoh Theta S) and navigation sensors aimed at outdoor applications. The assessments show that Ricoh Theta S position and attitude were estimated in a global bundle adjustment with a precision (standard deviation) of 4 cm and 0.3°, respectively, using as observations the detected matches from the proposed method. Compared with other methods based on SIFT extended to the omnidirectional geometry, our approach achieved compatible results for outdoor applications.
Keywords