Drugs and Drug Candidates (Apr 2023)

Synergistic Interaction of Glycyrrhizin with Norfloxacin Displays ROS-Induced Bactericidal Activity against Multidrug-Resistant <i>Staphylococcus aureus</i>

  • Vigyasa Singh,
  • Anirban Pal,
  • Mahendra P. Darokar

DOI
https://doi.org/10.3390/ddc2020016
Journal volume & issue
Vol. 2, no. 2
pp. 295 – 310

Abstract

Read online

Acquired bacterial resistance against several antibiotics has severely impaired the drug treatment regime. Multidrug-resistant Staphylococcus aureus (MDRSA) causes several life-threatening human pathologies. The introduction of novel antibiotics is a tedious process. Therefore, we have introduced glycyrrhizin (Gly) as a bioenhancer of norfloxacin (Nor), which showed synergistic interactions and a robust drug response. The drug resistance reversal potential of Gly against MDRSA was monitored. Gly and GlyNor (glycyrrhizin + norfloxacin) were used for spectrofluorometer and flow cytometry analysis for the measurement of free radicals and its effect upon cell membranes and macromolecules. Morphological analysis was carried out with the help of SEM. qRT-PCR analysis was conducted for gene regulation. Gly was observed to lower the MIC (minimum inhibitory concentration) of different groups of antibiotics up to 64-fold against MDRSA. GlyNor exerted oxidative stress, as evidenced by the measurement of reactive oxygen species (ROS) and their effect upon cell components. Gly and GlyNor showed membrane damage potential. The expression analysis of oxidative-related and MDR genes showed the up- and downregulation of these genes, respectively. GlyNor significantly lengthened post-antibiotic effects (PAE) and showed reduced mutation frequency rate (MFR). The synergistic bioenhancer properties of Gly with Nor and their enhanced ROS generation against MDRSA are reported for the first time in this study. Severe oxidative stress caused membrane damage, DNA fragmentation, transcriptional changes, and bacterial cell death. We strongly believe this could be a potential measure against rapidly evolving MDRSA.

Keywords