Diagnostics (Aug 2021)

Classification of Cardiomyopathies from MR Cine Images Using Convolutional Neural Network with Transfer Learning

  • Philippe Germain,
  • Armine Vardazaryan,
  • Nicolas Padoy,
  • Aissam Labani,
  • Catherine Roy,
  • Thomas Hellmut Schindler,
  • Soraya El Ghannudi

DOI
https://doi.org/10.3390/diagnostics11091554
Journal volume & issue
Vol. 11, no. 9
p. 1554

Abstract

Read online

The automatic classification of various types of cardiomyopathies is desirable but has never been performed using a convolutional neural network (CNN). The purpose of this study was to evaluate currently available CNN models to classify cine magnetic resonance (cine-MR) images of cardiomyopathies. Method: Diastolic and systolic frames of 1200 cine-MR sequences of three categories of subjects (395 normal, 411 hypertrophic cardiomyopathy, and 394 dilated cardiomyopathy) were selected, preprocessed, and labeled. Pretrained, fine-tuned deep learning models (VGG) were used for image classification (sixfold cross-validation and double split testing with hold-out data). The heat activation map algorithm (Grad-CAM) was applied to reveal salient pixel areas leading to the classification. Results: The diastolic–systolic dual-input concatenated VGG model cross-validation accuracy was 0.982 ± 0.009. Summed confusion matrices showed that, for the 1200 inputs, the VGG model led to 22 errors. The classification of a 227-input validation group, carried out by an experienced radiologist and cardiologist, led to a similar number of discrepancies. The image preparation process led to 5% accuracy improvement as compared to nonprepared images. Grad-CAM heat activation maps showed that most misclassifications occurred when extracardiac location caught the attention of the network. Conclusions: CNN networks are very well suited and are 98% accurate for the classification of cardiomyopathies, regardless of the imaging plane, when both diastolic and systolic frames are incorporated. Misclassification is in the same range as inter-observer discrepancies in experienced human readers.

Keywords