Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica (Nov 2021)

Bounds for the minimum distance function

  • Núñez-Betancourt Luis,
  • Pitones Yuriko,
  • Villarreal Rafael H.

DOI
https://doi.org/10.2478/auom-2021-0042
Journal volume & issue
Vol. 29, no. 3
pp. 229 – 242

Abstract

Read online

Let I be a homogeneous ideal in a polynomial ring S. In this paper, we extend the study of the asymptotic behavior of the minimum distance function δI of I and give bounds for its stabilization point, rI, when I is an F -pure or a square-free monomial ideal. These bounds are related with the dimension and the Castelnuovo–Mumford regularity of I.

Keywords