Crop Journal (Oct 2023)

RPNet: Rice plant counting after tillering stage based on plant attention and multiple supervision network

  • Xiaodong Bai,
  • Susong Gu,
  • Pichao Liu,
  • Aiping Yang,
  • Zhe Cai,
  • Jianjun Wang,
  • Jianguo Yao

Journal volume & issue
Vol. 11, no. 5
pp. 1586 – 1594

Abstract

Read online

Rice is a major food crop and is planted worldwide. Climatic deterioration, population growth, farmland shrinkage, and other factors have necessitated the application of cutting-edge technology to achieve accurate and efficient rice production. In this study, we mainly focus on the precise counting of rice plants in paddy field and design a novel deep learning network, RPNet, consisting of four modules: feature encoder, attention block, initial density map generator, and attention map generator. Additionally, we propose a novel loss function called RPloss. This loss function considers the magnitude relationship between different sub-loss functions and ensures the validity of the designed network. To verify the proposed method, we conducted experiments on our recently presented URC dataset, which is an unmanned aerial vehicle dataset that is quite challenged at counting rice plants. For experimental comparison, we chose some popular or recently proposed counting methods, namely MCNN, CSRNet, SANet, TasselNetV2, and FIDTM. In the experiment, the mean absolute error (MAE), root mean squared error (RMSE), relative MAE (rMAE) and relative RMSE (rRMSE) of the proposed RPNet were 8.3, 11.2, 1.2% and 1.6%, respectively, for the URC dataset. RPNet surpasses state-of-the-art methods in plant counting. To verify the universality of the proposed method, we conducted experiments on the well-know MTC and WED datasets. The final results on these datasets showed that our network achieved the best results compared with excellent previous approaches. The experiments showed that the proposed RPNet can be utilized to count rice plants in paddy fields and replace traditional methods.

Keywords