Trajectory reconstruction identifies dysregulation of perinatal maturation programs in pluripotent stem cell-derived cardiomyocytes
Suraj Kannan,
Matthew Miyamoto,
Renjun Zhu,
Michaela Lynott,
Jason Guo,
Elaine Zhelan Chen,
Alexandre R. Colas,
Brian Leei Lin,
Chulan Kwon
Affiliations
Suraj Kannan
Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
Matthew Miyamoto
Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
Renjun Zhu
Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
Michaela Lynott
Sanford Burham Prebys Medical Discovery Institute, San Diego, CA, USA
Jason Guo
Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
Elaine Zhelan Chen
Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
Alexandre R. Colas
Sanford Burham Prebys Medical Discovery Institute, San Diego, CA, USA
Brian Leei Lin
Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
Chulan Kwon
Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Corresponding author
Summary: A limitation in the application of pluripotent stem cell-derived cardiomyocytes (PSC-CMs) is the failure of these cells to achieve full functional maturity. The mechanisms by which directed differentiation differs from endogenous development, leading to consequent PSC-CM maturation arrest, remain unclear. Here, we generate a single-cell RNA sequencing (scRNA-seq) reference of mouse in vivo CM maturation with extensive sampling of previously difficult-to-isolate perinatal time periods. We subsequently generate isogenic embryonic stem cells to create an in vitro scRNA-seq reference of PSC-CM-directed differentiation. Through trajectory reconstruction, we identify an endogenous perinatal maturation program that is poorly recapitulated in vitro. By comparison with published human datasets, we identify a network of nine transcription factors (TFs) whose targets are consistently dysregulated in PSC-CMs across species. Notably, these TFs are only partially activated in common ex vivo approaches to engineer PSC-CM maturation. Our study can be leveraged toward improving the clinical viability of PSC-CMs.