BMC Bioinformatics (Oct 2011)
Genomic distance under gene substitutions
Abstract
Abstract Background The distance between two genomes is often computed by comparing only the common markers between them. Some approaches are also able to deal with non-common markers, allowing the insertion or the deletion of such markers. In these models, a deletion and a subsequent insertion that occur at the same position of the genome count for two sorting steps. Results Here we propose a new model that sorts non-common markers with substitutions, which are more powerful operations that comprehend insertions and deletions. A deletion and an insertion that occur at the same position of the genome can be modeled as a substitution, counting for a single sorting step. Conclusions Comparing genomes with unequal content, but without duplicated markers, we give a linear time algorithm to compute the genomic distance considering substitutions and double-cut-and-join (DCJ) operations. This model provides a parsimonious genomic distance to handle genomes free of duplicated markers, that is in practice a lower bound to the real genomic distances. The method could also be used to refine orthology assignments, since in some cases a substitution could actually correspond to an unannotated orthology.